Day 14
parent
462100aba0
commit
9afda7f3e9
|
@ -0,0 +1,2 @@
|
||||||
|
498,4 -> 498,6 -> 496,6
|
||||||
|
503,4 -> 502,4 -> 502,9 -> 494,9
|
|
@ -0,0 +1,147 @@
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
527,102 -> 527,106 -> 523,106 -> 523,111 -> 540,111 -> 540,106 -> 533,106 -> 533,102
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
541,165 -> 541,166 -> 551,166 -> 551,165
|
||||||
|
506,68 -> 506,70 -> 502,70 -> 502,77 -> 513,77 -> 513,70 -> 512,70 -> 512,68
|
||||||
|
541,165 -> 541,166 -> 551,166 -> 551,165
|
||||||
|
565,161 -> 569,161
|
||||||
|
483,51 -> 483,52 -> 500,52 -> 500,51
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
490,35 -> 490,31 -> 490,35 -> 492,35 -> 492,31 -> 492,35 -> 494,35 -> 494,29 -> 494,35 -> 496,35 -> 496,26 -> 496,35
|
||||||
|
538,114 -> 538,116 -> 536,116 -> 536,122 -> 552,122 -> 552,116 -> 544,116 -> 544,114
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
499,13 -> 499,15 -> 495,15 -> 495,22 -> 506,22 -> 506,15 -> 501,15 -> 501,13
|
||||||
|
506,84 -> 510,84
|
||||||
|
499,13 -> 499,15 -> 495,15 -> 495,22 -> 506,22 -> 506,15 -> 501,15 -> 501,13
|
||||||
|
512,80 -> 516,80
|
||||||
|
499,13 -> 499,15 -> 495,15 -> 495,22 -> 506,22 -> 506,15 -> 501,15 -> 501,13
|
||||||
|
512,84 -> 516,84
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
490,35 -> 490,31 -> 490,35 -> 492,35 -> 492,31 -> 492,35 -> 494,35 -> 494,29 -> 494,35 -> 496,35 -> 496,26 -> 496,35
|
||||||
|
538,114 -> 538,116 -> 536,116 -> 536,122 -> 552,122 -> 552,116 -> 544,116 -> 544,114
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
506,68 -> 506,70 -> 502,70 -> 502,77 -> 513,77 -> 513,70 -> 512,70 -> 512,68
|
||||||
|
509,82 -> 513,82
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
538,114 -> 538,116 -> 536,116 -> 536,122 -> 552,122 -> 552,116 -> 544,116 -> 544,114
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
553,161 -> 557,161
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
490,35 -> 490,31 -> 490,35 -> 492,35 -> 492,31 -> 492,35 -> 494,35 -> 494,29 -> 494,35 -> 496,35 -> 496,26 -> 496,35
|
||||||
|
490,35 -> 490,31 -> 490,35 -> 492,35 -> 492,31 -> 492,35 -> 494,35 -> 494,29 -> 494,35 -> 496,35 -> 496,26 -> 496,35
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
554,133 -> 558,133
|
||||||
|
490,35 -> 490,31 -> 490,35 -> 492,35 -> 492,31 -> 492,35 -> 494,35 -> 494,29 -> 494,35 -> 496,35 -> 496,26 -> 496,35
|
||||||
|
551,136 -> 555,136
|
||||||
|
563,136 -> 567,136
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
527,102 -> 527,106 -> 523,106 -> 523,111 -> 540,111 -> 540,106 -> 533,106 -> 533,102
|
||||||
|
499,13 -> 499,15 -> 495,15 -> 495,22 -> 506,22 -> 506,15 -> 501,15 -> 501,13
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
499,13 -> 499,15 -> 495,15 -> 495,22 -> 506,22 -> 506,15 -> 501,15 -> 501,13
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
517,95 -> 522,95
|
||||||
|
503,86 -> 507,86
|
||||||
|
506,68 -> 506,70 -> 502,70 -> 502,77 -> 513,77 -> 513,70 -> 512,70 -> 512,68
|
||||||
|
559,155 -> 563,155
|
||||||
|
521,86 -> 525,86
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
519,98 -> 519,99 -> 529,99 -> 529,98
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
527,102 -> 527,106 -> 523,106 -> 523,111 -> 540,111 -> 540,106 -> 533,106 -> 533,102
|
||||||
|
483,51 -> 483,52 -> 500,52 -> 500,51
|
||||||
|
515,86 -> 519,86
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
490,35 -> 490,31 -> 490,35 -> 492,35 -> 492,31 -> 492,35 -> 494,35 -> 494,29 -> 494,35 -> 496,35 -> 496,26 -> 496,35
|
||||||
|
483,51 -> 483,52 -> 500,52 -> 500,51
|
||||||
|
490,35 -> 490,31 -> 490,35 -> 492,35 -> 492,31 -> 492,35 -> 494,35 -> 494,29 -> 494,35 -> 496,35 -> 496,26 -> 496,35
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
519,98 -> 519,99 -> 529,99 -> 529,98
|
||||||
|
506,68 -> 506,70 -> 502,70 -> 502,77 -> 513,77 -> 513,70 -> 512,70 -> 512,68
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
527,102 -> 527,106 -> 523,106 -> 523,111 -> 540,111 -> 540,106 -> 533,106 -> 533,102
|
||||||
|
519,98 -> 519,99 -> 529,99 -> 529,98
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
490,35 -> 490,31 -> 490,35 -> 492,35 -> 492,31 -> 492,35 -> 494,35 -> 494,29 -> 494,35 -> 496,35 -> 496,26 -> 496,35
|
||||||
|
490,35 -> 490,31 -> 490,35 -> 492,35 -> 492,31 -> 492,35 -> 494,35 -> 494,29 -> 494,35 -> 496,35 -> 496,26 -> 496,35
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
557,130 -> 561,130
|
||||||
|
518,84 -> 522,84
|
||||||
|
545,127 -> 558,127
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
556,152 -> 560,152
|
||||||
|
506,68 -> 506,70 -> 502,70 -> 502,77 -> 513,77 -> 513,70 -> 512,70 -> 512,68
|
||||||
|
559,161 -> 563,161
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
541,165 -> 541,166 -> 551,166 -> 551,165
|
||||||
|
490,35 -> 490,31 -> 490,35 -> 492,35 -> 492,31 -> 492,35 -> 494,35 -> 494,29 -> 494,35 -> 496,35 -> 496,26 -> 496,35
|
||||||
|
538,114 -> 538,116 -> 536,116 -> 536,122 -> 552,122 -> 552,116 -> 544,116 -> 544,114
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
527,102 -> 527,106 -> 523,106 -> 523,111 -> 540,111 -> 540,106 -> 533,106 -> 533,102
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
509,86 -> 513,86
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
520,92 -> 525,92
|
||||||
|
556,158 -> 560,158
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
553,155 -> 557,155
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
538,114 -> 538,116 -> 536,116 -> 536,122 -> 552,122 -> 552,116 -> 544,116 -> 544,114
|
||||||
|
538,114 -> 538,116 -> 536,116 -> 536,122 -> 552,122 -> 552,116 -> 544,116 -> 544,114
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
499,13 -> 499,15 -> 495,15 -> 495,22 -> 506,22 -> 506,15 -> 501,15 -> 501,13
|
||||||
|
562,158 -> 566,158
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
550,158 -> 554,158
|
||||||
|
515,82 -> 519,82
|
||||||
|
557,136 -> 561,136
|
||||||
|
506,68 -> 506,70 -> 502,70 -> 502,77 -> 513,77 -> 513,70 -> 512,70 -> 512,68
|
||||||
|
547,161 -> 551,161
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
531,95 -> 536,95
|
||||||
|
527,102 -> 527,106 -> 523,106 -> 523,111 -> 540,111 -> 540,106 -> 533,106 -> 533,102
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
527,92 -> 532,92
|
||||||
|
523,89 -> 528,89
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
499,13 -> 499,15 -> 495,15 -> 495,22 -> 506,22 -> 506,15 -> 501,15 -> 501,13
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
527,102 -> 527,106 -> 523,106 -> 523,111 -> 540,111 -> 540,106 -> 533,106 -> 533,102
|
||||||
|
490,35 -> 490,31 -> 490,35 -> 492,35 -> 492,31 -> 492,35 -> 494,35 -> 494,29 -> 494,35 -> 496,35 -> 496,26 -> 496,35
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
560,133 -> 564,133
|
||||||
|
506,68 -> 506,70 -> 502,70 -> 502,77 -> 513,77 -> 513,70 -> 512,70 -> 512,68
|
||||||
|
538,114 -> 538,116 -> 536,116 -> 536,122 -> 552,122 -> 552,116 -> 544,116 -> 544,114
|
||||||
|
524,95 -> 529,95
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
208
src/main.rs
208
src/main.rs
|
@ -299,9 +299,217 @@ solutions! {
|
||||||
let values = input.lines().filter(|line| !line.is_empty()).map(Value::from_str).collect_vec();
|
let values = input.lines().filter(|line| !line.is_empty()).map(Value::from_str).collect_vec();
|
||||||
find_decoder_key(values).into()
|
find_decoder_key(values).into()
|
||||||
},
|
},
|
||||||
|
],
|
||||||
|
[
|
||||||
|
// day 14 part 1
|
||||||
|
|input| {
|
||||||
|
let lines = input.lines().map(make_points).flat_map(make_lines).collect_vec();
|
||||||
|
Sandmap::from_lines(lines, false).drop_sand().into()
|
||||||
|
},
|
||||||
|
// day 14 part 2
|
||||||
|
|input| {
|
||||||
|
let lines = input.lines().map(make_points).flat_map(make_lines).collect_vec();
|
||||||
|
Sandmap::from_lines(lines, true).fill_sand().into()
|
||||||
|
}
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn make_points(line: &str) -> Vec<(usize, usize)> {
|
||||||
|
line.split(" -> ")
|
||||||
|
.map(|pair| {
|
||||||
|
pair.split(',')
|
||||||
|
.map(|n| n.parse::<usize>().unwrap())
|
||||||
|
.collect_tuple()
|
||||||
|
.unwrap()
|
||||||
|
})
|
||||||
|
.collect()
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
enum Line {
|
||||||
|
V { x: usize, ys: RangeInclusive<usize> },
|
||||||
|
H { xs: RangeInclusive<usize>, y: usize },
|
||||||
|
}
|
||||||
|
|
||||||
|
fn make_range(start: usize, end: usize) -> RangeInclusive<usize> {
|
||||||
|
if start > end {
|
||||||
|
end..=start
|
||||||
|
} else {
|
||||||
|
start..=end
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn make_lines(pts: Vec<(usize, usize)>) -> Vec<Line> {
|
||||||
|
pts.into_iter()
|
||||||
|
.tuple_windows()
|
||||||
|
.map(|((start_x, start_y), (end_x, end_y))| {
|
||||||
|
if start_x == end_x {
|
||||||
|
Line::V {
|
||||||
|
x: start_x,
|
||||||
|
ys: make_range(start_y, end_y),
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
Line::H {
|
||||||
|
xs: make_range(start_x, end_x),
|
||||||
|
y: start_y,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
})
|
||||||
|
.collect()
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||||
|
enum Tile {
|
||||||
|
Rock,
|
||||||
|
Empty,
|
||||||
|
Sand,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Display for Tile {
|
||||||
|
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||||
|
let c = match self {
|
||||||
|
Tile::Rock => '#',
|
||||||
|
Tile::Empty => '.',
|
||||||
|
Tile::Sand => 'o',
|
||||||
|
};
|
||||||
|
write!(f, "{c}")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
struct Sandmap {
|
||||||
|
map: Vec<Vec<Tile>>,
|
||||||
|
depth: usize,
|
||||||
|
start: usize,
|
||||||
|
entry: usize,
|
||||||
|
end: usize,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Sandmap {
|
||||||
|
fn draw(&self) {
|
||||||
|
for y in 0..self.map[0].len() {
|
||||||
|
for x in 0..(self.end - self.start) + 1 {
|
||||||
|
let tile = self.map[x][y];
|
||||||
|
print!("{tile}")
|
||||||
|
}
|
||||||
|
println!()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn fill_sand(mut self) -> u64 {
|
||||||
|
let mut n = 0;
|
||||||
|
let (mut x, mut y) = self.drop_one_fill();
|
||||||
|
while (x, y) != (self.entry, 0) {
|
||||||
|
self.map[x][y] = Tile::Sand;
|
||||||
|
n += 1;
|
||||||
|
(x, y) = self.drop_one_fill();
|
||||||
|
}
|
||||||
|
n + 1
|
||||||
|
}
|
||||||
|
|
||||||
|
fn drop_sand(mut self) -> u64 {
|
||||||
|
let mut n = 0;
|
||||||
|
while let Some((x, y)) = self.drop_one() {
|
||||||
|
self.map[x][y] = Tile::Sand;
|
||||||
|
n += 1
|
||||||
|
}
|
||||||
|
n
|
||||||
|
}
|
||||||
|
|
||||||
|
fn drop_one_fill(&mut self) -> (usize, usize) {
|
||||||
|
let mut sand = (self.entry, 0);
|
||||||
|
while let Some(next) = self.gravity(sand) {
|
||||||
|
if next == sand {
|
||||||
|
return sand;
|
||||||
|
}
|
||||||
|
sand = next
|
||||||
|
}
|
||||||
|
let (x, _) = sand;
|
||||||
|
let mut col = vec![Tile::Empty; self.depth + 1];
|
||||||
|
col[self.depth] = Tile::Rock;
|
||||||
|
if x < self.entry {
|
||||||
|
self.map.insert(0, col);
|
||||||
|
self.start -= 1;
|
||||||
|
self.entry += 1;
|
||||||
|
(0, self.depth - 1)
|
||||||
|
} else {
|
||||||
|
self.map.push(col);
|
||||||
|
self.end += 1;
|
||||||
|
(x + 1, self.depth - 1)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn drop_one(&self) -> Option<(usize, usize)> {
|
||||||
|
let mut sand = (self.entry, 0);
|
||||||
|
while let Some(next) = self.gravity(sand) {
|
||||||
|
if next == sand {
|
||||||
|
return Some(sand);
|
||||||
|
}
|
||||||
|
sand = next
|
||||||
|
}
|
||||||
|
None
|
||||||
|
}
|
||||||
|
|
||||||
|
fn gravity(&self, (x, y): (usize, usize)) -> Option<(usize, usize)> {
|
||||||
|
if y == self.depth {
|
||||||
|
None
|
||||||
|
} else if self.map[x][y + 1] == Tile::Empty {
|
||||||
|
Some((x, y + 1))
|
||||||
|
} else if x == 0 {
|
||||||
|
None
|
||||||
|
} else if self.map[x - 1][y + 1] == Tile::Empty {
|
||||||
|
Some((x - 1, y + 1))
|
||||||
|
} else if x >= (self.end - self.start) {
|
||||||
|
None
|
||||||
|
} else if self.map[x + 1][y + 1] == Tile::Empty {
|
||||||
|
Some((x + 1, y + 1))
|
||||||
|
} else {
|
||||||
|
Some((x, y))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn from_lines(mut lines: Vec<Line>, with_floor: bool) -> Self {
|
||||||
|
let (min_x, max_x, mut max_y) =
|
||||||
|
lines
|
||||||
|
.iter()
|
||||||
|
.cloned()
|
||||||
|
.fold((500, 500, 0), |(min_x, max_x, max_y), line| match line {
|
||||||
|
Line::V { x, ys } => (min_x.min(x), max_x.max(x), max_y.max(*ys.end())),
|
||||||
|
Line::H { xs, y } => {
|
||||||
|
(min_x.min(*xs.start()), max_x.max(*xs.end()), max_y.max(y))
|
||||||
|
}
|
||||||
|
});
|
||||||
|
if with_floor {
|
||||||
|
max_y += 2;
|
||||||
|
lines.push(Line::H {
|
||||||
|
xs: min_x..=max_x,
|
||||||
|
y: max_y,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
let mut map = vec![vec![Tile::Empty; max_y + 1]; max_x - min_x + 1];
|
||||||
|
for line in lines {
|
||||||
|
match line {
|
||||||
|
Line::V { x, ys } => {
|
||||||
|
for y in ys {
|
||||||
|
map[x - min_x][y] = Tile::Rock;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Line::H { xs, y } => {
|
||||||
|
for x in xs {
|
||||||
|
map[x - min_x][y] = Tile::Rock;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Self {
|
||||||
|
map,
|
||||||
|
depth: max_y,
|
||||||
|
start: min_x,
|
||||||
|
entry: 500 - min_x,
|
||||||
|
end: max_x,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
fn find_decoder_key(mut values: Vec<Value>) -> u64 {
|
fn find_decoder_key(mut values: Vec<Value>) -> u64 {
|
||||||
let (p1, p2) = Value::divider_packets();
|
let (p1, p2) = Value::divider_packets();
|
||||||
values.extend([p1.clone(), p2.clone()]);
|
values.extend([p1.clone(), p2.clone()]);
|
||||||
|
|
Loading…
Reference in New Issue